Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 252: 112482, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38218138

RESUMO

Bacteria utilize heme proteins, such as globin coupled sensors (GCSs), to sense and respond to oxygen levels. GCSs are predicted in almost 2000 bacterial species and consist of a globin domain linked by a central domain to a variety of output domains, including diguanylate cyclase domains that synthesize c-di-GMP, a major regulator of biofilm formation. To investigate the effects of middle domain length and heme edge residues on GCS diguanylate cyclase activity and cellular function, a putative diguanylate cyclase-containing GCS from Shewanella sp. ANA-3 (SA3GCS) was characterized. Binding of O2 to the heme resulted in activation of diguanylate cyclase activity, while NO and CO binding had minimal effects on catalysis, demonstrating that SA3GCS exhibits greater ligand selectivity for cyclase activation than many other diguanylate cyclase-containing GCSs. Small angle X-ray scattering analysis of dimeric SA3GCS identified movement of the cyclase domains away from each other, while maintaining the globin dimer interface, as a potential mechanism for regulating cyclase activity. Comparison of the Shewanella ANA-3 wild type and SA3GCS deletion (ΔSA3GCS) strains identified changes in biofilm formation, demonstrating that SA3GCS diguanylate cyclase activity modulates Shewanella phenotypes.


Assuntos
GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli , Shewanella , Globinas/química , Oxigênio/metabolismo , Proteínas de Escherichia coli/química , Fósforo-Oxigênio Liases/química , Biofilmes , Heme/química , Proteínas de Bactérias/química
2.
Photochem Photobiol Sci ; 21(10): 1761-1779, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35788917

RESUMO

Understanding the relationship between protein sequence, structure and function is one of the fundamental challenges in biochemistry. A direct correlation, however, is often not trivial since protein dynamics also play an important functional role-especially in signal transduction processes. In a subfamily of bacterial light sensors, phytochrome-activated diguanylate cyclases (PadCs), a characteristic coiled-coil linker element connects photoreceptor and output module, playing an essential role in signal integration. Combining phylogenetic analyses with biochemical characterisations, we were able to show that length and composition of this linker determine sensor-effector function and as such are under considerable evolutionary pressure. The linker length, together with the upstream PHY-specific domain, influences the dynamic range of effector activation and can even cause light-induced enzyme inhibition. We demonstrate phylogenetic clustering according to linker length, and the development of new linker lengths as well as new protein function within linker families. The biochemical characterisation of PadC homologs revealed that the functional coupling of PHY dimer interface and linker element defines signal integration and regulation of output functionality. A small subfamily of PadCs, characterised by a linker length breaking the coiled-coil pattern, shows a markedly different behaviour from other homologs. The effect of the central helical spine on PadC function highlights its essential role in signal integration as well as direct regulation of diguanylate cyclase activity. Appreciation of sensor-effector linkers as integrator elements and their coevolution with sensory modules is a further step towards the use of functionally diverse homologs as building blocks for rationally designed optogenetic tools.


Assuntos
Fitocromo , Proteínas de Bactérias/química , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Filogenia , Fitocromo/química
3.
Biochemistry ; 60(49): 3801-3812, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34843212

RESUMO

Bifunctional enzymes, which contain two domains with opposing enzymatic activities, are widely distributed in bacteria, but the regulatory mechanism(s) that prevent futile cycling are still poorly understood. The recently described bifunctional enzyme, DcpG, exhibits unusual heme properties and is surprisingly able to differentially regulate its two cyclic dimeric guanosine monophosphate (c-di-GMP) metabolic domains in response to heme gaseous ligands. Mutagenesis of heme-edge residues was used to probe the heme pocket and resulted in decreased O2 dissociation kinetics, identifying roles for these residues in modulating DcpG gas sensing. In addition, the resonance Raman spectra of the DcpG wild type and heme-edge mutants revealed that the mutations alter the heme electrostatic environment, vinyl group conformations, and spin state population. Using small-angle X-ray scattering and negative stain electron microscopy, the heme-edge mutations were demonstrated to cause changes to the protein conformation, which resulted in altered signaling transduction and enzyme kinetics. These findings provide insights into molecular interactions that regulate DcpG gas sensing as well as mechanisms that have evolved to control multidomain bacterial signaling proteins.


Assuntos
Proteínas de Bactérias/química , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/química , Heme/química , Hemeproteínas/química , Paenibacillus/química , Diester Fosfórico Hidrolases/química , Fósforo-Oxigênio Liases/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , GMP Cíclico/química , GMP Cíclico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Heme/metabolismo , Hemeproteínas/genética , Hemeproteínas/metabolismo , Cinética , Modelos Moleculares , Oxigênio/química , Oxigênio/metabolismo , Paenibacillus/enzimologia , Paenibacillus/genética , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Eletricidade Estática , Relação Estrutura-Atividade , Especificidade por Substrato
4.
Cell ; 184(23): 5728-5739.e16, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34644530

RESUMO

The cyclic pyrimidines 3',5'-cyclic cytidine monophosphate (cCMP) and 3',5'-cyclic uridine monophosphate (cUMP) have been reported in multiple organisms and cell types. As opposed to the cyclic nucleotides 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP), which are second messenger molecules with well-established regulatory roles across all domains of life, the biological role of cyclic pyrimidines has remained unclear. Here we report that cCMP and cUMP are second messengers functioning in bacterial immunity against viruses. We discovered a family of bacterial pyrimidine cyclase enzymes that specifically synthesize cCMP and cUMP following phage infection and demonstrate that these molecules activate immune effectors that execute an antiviral response. A crystal structure of a uridylate cyclase enzyme from this family explains the molecular mechanism of selectivity for pyrimidines as cyclization substrates. Defense systems encoding pyrimidine cyclases, denoted here Pycsar (pyrimidine cyclase system for antiphage resistance), are widespread in prokaryotes. Our results assign clear biological function to cCMP and cUMP as immunity signaling molecules in bacteria.


Assuntos
Bactérias/imunologia , Bactérias/virologia , Bacteriófagos/fisiologia , CMP Cíclico/metabolismo , Nucleotídeos Cíclicos/metabolismo , Uridina Monofosfato/metabolismo , Sequência de Aminoácidos , Bactérias/genética , Burkholderia/enzimologia , CMP Cíclico/química , Ciclização , Escherichia coli/enzimologia , Modelos Moleculares , Mutação/genética , Nucleotídeos Cíclicos/química , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Pirimidinas/metabolismo , Uridina Monofosfato/química
5.
J Biol Chem ; 297(5): 101317, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34678313

RESUMO

Cyclic-di-adenosine monophosphate (c-di-AMP) is an important nucleotide signaling molecule that plays a key role in osmotic regulation in bacteria. c-di-AMP is produced from two molecules of ATP by proteins containing a diadenylate cyclase (DAC) domain. In Bacillus subtilis, the main c-di-AMP cyclase, CdaA, is a membrane-linked cyclase with an N-terminal transmembrane domain followed by the cytoplasmic DAC domain. As both high and low levels of c-di-AMP have a negative impact on bacterial growth, the cellular levels of this signaling nucleotide are tightly regulated. Here we investigated how the activity of the B. subtilis CdaA is regulated by the phosphoglucomutase GlmM, which has been shown to interact with the c-di-AMP cyclase. Using the soluble B. subtilis CdaACD catalytic domain and purified full-length GlmM or the GlmMF369 variant lacking the C-terminal flexible domain 4, we show that the cyclase and phosphoglucomutase form a stable complex in vitro and that GlmM is a potent cyclase inhibitor. We determined the crystal structure of the individual B. subtilis CdaACD and GlmM homodimers and of the CdaACD:GlmMF369 complex. In the complex structure, a CdaACD dimer is bound to a GlmMF369 dimer in such a manner that GlmM blocks the oligomerization of CdaACD and formation of active head-to-head cyclase oligomers, thus suggesting a mechanism by which GlmM acts as a cyclase inhibitor. As the amino acids at the CdaACD:GlmM interphase are conserved, we propose that the observed mechanism of inhibition of CdaA by GlmM may also be conserved among Firmicutes.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Complexos Multienzimáticos/química , Fosfoglucomutase/química , Fósforo-Oxigênio Liases/química , Multimerização Proteica , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Cristalografia por Raios X , Complexos Multienzimáticos/genética , Fosfoglucomutase/genética , Fósforo-Oxigênio Liases/genética , Domínios Proteicos , Estrutura Quaternária de Proteína
6.
Elife ; 102021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34498587

RESUMO

Cyclic-di-guanosine monophosphate (c-di-GMP) is an important effector associated with acute-chronic infection transition in Pseudomonas aeruginosa. Previously, we reported a signaling network SiaABCD, which regulates biofilm formation by modulating c-di-GMP level. However, the mechanism for SiaD activation by SiaC remains elusive. Here we determine the crystal structure of SiaC-SiaD-GpCpp complex and revealed a unique mirror symmetric conformation: two SiaD form a dimer with long stalk domains, while four SiaC bind to the conserved motifs on the stalks of SiaD and stabilize the conformation for further enzymatic catalysis. Furthermore, SiaD alone exhibits an inactive pentamer conformation in solution, demonstrating that SiaC activates SiaD through a dynamic mechanism of promoting the formation of active SiaD dimers. Mutagenesis assay confirmed that the stalks of SiaD are necessary for its activation. Together, we reveal a novel mechanism for DGC activation, which clarifies the regulatory networks of c-di-GMP signaling.


Assuntos
Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas aeruginosa/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Biofilmes/crescimento & desenvolvimento , Catálise , Fosfatos de Dinucleosídeos/química , Ativação Enzimática , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/genética , Ligação Proteica , Conformação Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Transdução de Sinais , Relação Estrutura-Atividade
7.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34168081

RESUMO

To initiate biofilm formation, it is critical for bacteria to sense a surface and respond precisely to activate downstream components of the biofilm program. Type 4 pili (T4P) and increasing levels of c-di-GMP have been shown to be important for surface sensing and biofilm formation, respectively; however, mechanisms important in modulating the levels of this dinucleotide molecule to define a precise output response are unknown. Here, using macroscopic bulk assays and single-cell tracking analyses of Pseudomonas aeruginosa, we uncover a role of the T4P alignment complex protein, PilO, in modulating the activity of the diguanylate cyclase (DGC) SadC. Two-hybrid and bimolecular fluorescence complementation assays, combined with genetic studies, are consistent with a model whereby PilO interacts with SadC and that the PilO-SadC interaction inhibits SadC's activity, resulting in decreased biofilm formation and increased motility. Using single-cell tracking, we monitor both the mean c-di-GMP and the variance of this dinucleotide in individual cells. Mutations that increase PilO-SadC interaction modestly, but significantly, decrease both the average and variance in c-di-GMP levels on a cell-by-cell basis, while mutants that disrupt PilO-SadC interaction increase the mean and variance of c-di-GMP levels. This work is consistent with a model wherein P. aeruginosa uses a component of the T4P scaffold to fine-tune the levels of this dinucleotide signal during surface commitment. Finally, given our previous findings linking SadC to the flagellar machinery, we propose that this DGC acts as a bridge to integrate T4P and flagellar-derived input signals during initial surface engagement.


Assuntos
Biofilmes/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/fisiologia , Motivos de Aminoácidos , Sequência Conservada , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Biológicos , Mutação/genética , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/genética , Ligação Proteica , Domínios Proteicos , Transdução de Sinais , Análise de Célula Única , Sistemas de Secreção Tipo IV
8.
Nat Commun ; 12(1): 2162, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846343

RESUMO

Diguanylate cyclases synthesising the bacterial second messenger c-di-GMP are found to be regulated by a variety of sensory input domains that control the activity of their catalytical GGDEF domain, but how activation proceeds mechanistically is, apart from a few examples, still largely unknown. As part of two-component systems, they are activated by cognate histidine kinases that phosphorylate their Rec input domains. DgcR from Leptospira biflexa is a constitutively dimeric prototype of this class of diguanylate cyclases. Full-length crystal structures reveal that BeF3- pseudo-phosphorylation induces a relative rotation of two rigid halves in the Rec domain. This is coupled to a reorganisation of the dimeric structure with concomitant switching of the coiled-coil linker to an alternative heptad register. Finally, the activated register allows the two substrate-loaded GGDEF domains, which are linked to the end of the coiled-coil via a localised hinge, to move into a catalytically competent dimeric arrangement. Bioinformatic analyses suggest that the binary register switch mechanism is utilised by many diguanylate cyclases with N-terminal coiled-coil linkers.


Assuntos
Proteínas de Escherichia coli/metabolismo , Leptospira/enzimologia , Fósforo-Oxigênio Liases/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Ácido Aspártico/metabolismo , Berílio/química , Ativação Enzimática , Proteínas de Escherichia coli/química , Retroalimentação Fisiológica , Fluoretos/química , Cinética , Modelos Moleculares , Fósforo-Oxigênio Liases/química , Fosforilação , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Rotação
9.
Biophys Chem ; 268: 106493, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152620

RESUMO

The bacterial secondary messenger bis-(3',5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) has been implicated in the pathogenesis of Vibrio cholerae, due to its significant role in regulating the virulence, biofilm formation and motility of the host organism. The VC0395_0300 protein from V. cholerae, possessing a GGEEF sequence has been established as a diguanylate cyclase (DGC) capable of catalyzing the conversion of two GTP molecules to form cyclic-di-GMP. This in turn, plays a crucial role in allowing the organism to adopt a dual lifestyle, thriving both in human and aquatic systems. The difficulty in procuring sufficient amounts of homogenous soluble protein for structural assessment of the GGDEF domain in VC0395_0300 and the lack of soluble protein yield, prompted the truncation into smaller constructs (Sebox31 and Sebox32) carrying the GGDEF domain. The truncates retained their diguanylate cyclase activity comparable to the wild type, and were able to form biofilms as well. Fluorescence and circular dichroism spectroscopy measurements revealed that the basic structural elements do not show significant changes in the truncated proteins as compared to the full-length. This has also been confirmed using homology modeling and molecular docking of the wild type and truncates. This led us to conclude that the truncated constructs retain their activity in spite of the deletions in the N terminal region. This is supportive of the fact that DGC activity in GGDEF proteins is predominantly dependent on the presence of the conserved GGD(/E)EF domain and its interaction with GTP.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Escherichia coli/genética , Fósforo-Oxigênio Liases/genética , Vibrio cholerae/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cólera/microbiologia , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Vibrio cholerae/química , Vibrio cholerae/metabolismo
10.
Protein J ; 39(5): 449-460, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33037984

RESUMO

Chorismate serves as a crucial precursor for the synthesis of many aromatic compounds essential for the survival and virulence in various bacteria and protozoans. Chorismate synthase, a vital enzyme in the shikimate pathway, is responsible for the formation of chorismate from enolpyruvylshikimate-3-phosphate (EPSP). Moraxella catarrhalis is reported to be resistant to many beta-lactam antibiotics and causes chronic ailments such as otitis media, sinusitis, laryngitis, and bronchopulmonary infections. Here, we have cloned the aroC gene from Moraxella catarrhalis in pET28c and heterologously produced the chorismate synthase (~ 43 kDa) in Escherichia coli BL21(DE3) cells. We have predicted the three-dimensional structure of this enzyme and used the refined model for ligand-based virtual screening against Supernatural Database using PyRx tool that led to the identification of the top three molecules (caffeic acid, gallic acid, and o-coumaric acid). The resultant protein-ligand complex structures were subjected to 50 ns molecular dynamics (MD) simulation using GROMACS. Further, the binding energy was calculated by MM/PBSA approach using the trajectory obtained from MD simulation. The binding affinities of these compounds were validated with ITC experiments, which suggest that gallic acid has the highest binding affinity amongst these three phytochemicals. Together, these results pave the way for the use of these phytochemicals as potential anti-bacterial compounds.


Assuntos
Antibacterianos/química , Proteínas de Bactérias , Simulação por Computador , Sistemas de Liberação de Medicamentos , Farmacorresistência Bacteriana , Simulação de Dinâmica Molecular , Moraxella catarrhalis/enzimologia , Fósforo-Oxigênio Liases , Compostos Fitoquímicos/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Humanos , Fósforo-Oxigênio Liases/antagonistas & inibidores , Fósforo-Oxigênio Liases/química
11.
Nat Chem Biol ; 16(9): 973-978, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32632294

RESUMO

The AROM complex is a multifunctional metabolic machine with ten enzymatic domains catalyzing the five central steps of the shikimate pathway in fungi and protists. We determined its crystal structure and catalytic behavior, and elucidated its conformational space using a combination of experimental and computational approaches. We derived this space in an elementary approach, exploiting an abundance of conformational information from its monofunctional homologs in the Protein Data Bank. It demonstrates how AROM is optimized for spatial compactness while allowing for unrestricted conformational transitions and a decoupled functioning of its individual enzymatic entities. With this architecture, AROM poses a tractable test case for the effects of active site proximity on the efficiency of both natural metabolic systems and biotechnological pathway optimization approaches. We show that a mere colocalization of enzymes is not sufficient to yield a detectable improvement of metabolic throughput.


Assuntos
Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , 3-Fosfoshikimato 1-Carboxiviniltransferase/química , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Acanthamoeba castellanii/química , Domínio Catalítico , Chaetomium/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Complexos Multienzimáticos/genética , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Conformação Proteica , Domínios Proteicos , Espalhamento a Baixo Ângulo , Ácido Chiquímico/metabolismo , Toxoplasma/química , Difração de Raios X
12.
J Bacteriol ; 202(18)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32661075

RESUMO

Chlorogenic acid (CGA) is a phenolic compound with well-known antibacterial properties against pathogens. In this study, structural and biochemical characterization was used to show the inhibitory role of CGA against the enzyme of the shikimate pathway, a well-characterized drug target in several pathogens. Here, we report the crystal structures of dehydroquinate synthase (DHQS), the second enzyme of the shikimate pathway, from Providencia alcalifaciens (PaDHQS), in binary complex with NAD and ternary complex with NAD and CGA. Structural analyses reveal that CGA occupies the substrate position in the active site of PaDHQS, which disables domain movements, leaving the enzyme in an open and catalysis-incompetent state. The binding analyses by isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) show that CGA binds to PaDHQS with KD (equilibrium dissociation constant) values of 6.3 µM and 0.5 µM, respectively. In vitro enzyme inhibition studies show that CGA inhibits PaDHQS with a Ki of 235 ± 21 µM, while it inhibits the growth of Providencia alcalifaciens, Moraxella catarrhalis, Staphylococcus aureus, and Escherichia coli with MIC values of 60 to 100 µM. In the presence of aromatic amino acids supplied externally, CGA does not show the toxic effect. These results, along with the observations of the inhibition of the 3-deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) regulatory domain by CGA in our previous study, suggest that CGA binds to shikimate pathway enzymes with high affinity and inhibits their catalysis and can be further exploited for designing novel drug-like molecules.IMPORTANCE The shikimate pathway is an attractive target for the development of herbicides and antimicrobial agents, as it is essential in plants, bacteria, and apicomplexan parasites but absent in humans. The enzymes of shikimate pathway are conserved among bacteria. Thus, the inhibitors of the shikimate pathway act on wide range of pathogens. We have identified that chlorogenic acid targets the enzymes of the shikimate pathway. The crystal structure of dehydroquinate synthase, the second enzyme of the pathway, in complex with chlorogenic acid and enzymatic inhibition studies explains the mechanism of inhibition of chlorogenic acid. These results suggest that chlorogenic acid has a good chemical scaffold and have important implications for its further development as a potent inhibitor of shikimate pathway enzymes.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/química , Ácido Clorogênico/farmacologia , Fósforo-Oxigênio Liases/química , Providencia/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Domínio Catalítico , Cinética , Fósforo-Oxigênio Liases/antagonistas & inibidores , Ligação Proteica , Providencia/enzimologia , Ácido Chiquímico/metabolismo
13.
Biosci Rep ; 40(2)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32039439

RESUMO

The ability of organisms to sense and adapt to oxygen levels in their environment leads to changes in cellular phenotypes, including biofilm formation and virulence. Globin coupled sensors (GCSs) are a family of heme proteins that regulate diverse functions in response to O2 levels, including modulating synthesis of cyclic dimeric guanosine monophosphate (c-di-GMP), a bacterial second messenger that regulates biofilm formation. While GCS proteins have been demonstrated to regulate O2-dependent pathways, the mechanism by which the O2 binding event is transmitted from the globin domain to the cyclase domain is unknown. Using chemical cross-linking and subsequent liquid chromatography-tandem mass spectrometry, diguanylate cyclase (DGC)-containing GCS proteins from Bordetella pertussis (BpeGReg) and Pectobacterium carotovorum (PccGCS) have been demonstrated to form direct interactions between the globin domain and a middle domain π-helix. Additionally, mutation of the π-helix caused major changes in oligomerization and loss of DGC activity. Furthermore, results from assays with isolated globin and DGC domains found that DGC activity is affected by the cognate globin domain, indicating unique interactions between output domain and cognate globin sensor. Based on these studies a compact GCS structure, which depends on the middle domain π-helix for orienting the three domains, is needed for DGC activity and allows for direct sensor domain interactions with both middle and output domains to transmit the O2 binding signal. The insights from the present study improve our understanding of DGC regulation and provide insight into GCS signaling that may lead to the ability to rationally control O2-dependent GCS activity.


Assuntos
Proteínas de Bactérias/metabolismo , Bordetella pertussis/enzimologia , Oxigênio/metabolismo , Pectobacterium carotovorum/enzimologia , Fósforo-Oxigênio Liases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Bordetella pertussis/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Cinética , Pectobacterium carotovorum/genética , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/genética , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
14.
Sci Rep ; 10(1): 3077, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080219

RESUMO

c-di-GMP is a major player in the switch between biofilm and motile lifestyles. Several bacteria exhibit a large number of c-di-GMP metabolizing proteins, thus a fine-tuning of this nucleotide levels may occur. It is hypothesized that some c-di-GMP metabolizing proteins would provide the global c-di-GMP levels inside the cell whereas others would maintain a localized pool, with the resulting c-di-GMP acting at the vicinity of its production. Although attractive, this hypothesis has yet to be demonstrated in Pseudomonas aeruginosa. We found that the diguanylate cyclase DgcP interacts with the cytosolic region of FimV, a polar peptidoglycan-binding protein involved in type IV pilus assembly. Moreover, DgcP is located at the cell poles in wild type cells but scattered in the cytoplasm of cells lacking FimV. Overexpression of dgcP leads to the classical phenotypes of high c-di-GMP levels (increased biofilm and impaired motilities) in the wild-type strain, but not in a ΔfimV background. Therefore, our findings suggest that DgcP activity is regulated by FimV. The polar localization of DgcP might contribute to a local c-di-GMP pool that can be sensed by other proteins at the cell pole, bringing to light a specialized function for a specific diguanylate cyclase.


Assuntos
Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Biofilmes , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/química , Fímbrias Bacterianas/metabolismo , Modelos Biológicos , Mutação/genética , Fenótipo , Fósforo-Oxigênio Liases/química , Ligação Proteica , Domínios Proteicos , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiologia
15.
Environ Microbiol Rep ; 12(1): 38-48, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31691501

RESUMO

Cyclic diguanylate (c-di-GMP) is a broadly conserved bacterial signalling molecule that modulates diverse cellular processes, such as biofilm formation, colony morphology and swimming motility. The intracellular level of c-di-GMP is controlled by diguanylate cyclases (DGCs) with GGDEF domain and phosphodiesterases (PDEs) with either EAL or HD-GYP domain. Pseudomonas putida KT2440 has a large group of genes on its genome encoding proteins with GGDEF/EAL/HD-GYP domains. However, phenotypic-genotypic correlation and c-di-GMP metabolism of these genes were largely unknown. Herein, by systematically constructing deletion mutants/overexpression strains of the 42 predicted c-di-GMP metabolism-related genes and analysing the phenotypes, we preliminarily revealed the role of each gene in biofilm formation, colony morphology and swimming motility. Subsequent results from protein sequence alignments and cellular c-di-GMP assessment indicated that 25 out of the 42 genes were likely to encode DGCs, nine genes were predicted to encode PDEs, four genes encoded bifunctional enzymes and the other four genes encoded enzymatically inactive proteins. This study offers a basic understanding of the roles of these 42 genes and can serve as a toolkit for investigators to further elucidate the functions of these GGDEF and EAL/HD-GYP domain-containing proteins.


Assuntos
Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Diester Fosfórico Hidrolases/química , Fósforo-Oxigênio Liases/química , Pseudomonas putida/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fenótipo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Domínios Proteicos , Pseudomonas putida/química , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
16.
Biochem Biophys Res Commun ; 523(2): 287-292, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31862141

RESUMO

Cyclic-di-GMP (c-di-GMP) synthesized by diguanylate cyclases has been an important and ubiquitous secondary messenger in almost all bacterial systems. In Vibrio cholerae, c-di-GMP plays an intricate role in the production of the exopolysaccharide matrix, and thereby, in biofilm formation. The formation of the surface biofilm enables the bacteria to survive in aquatic bodies, when not infecting a human host. Diguanylate cyclases are the class of enzymes which synthesize c-di-GMP from two molecules of GTP and are endowed with a GGDEF or, a GGEEF signature domain. The VC0395_0300 protein from V. cholerae, has been established as a diguanylate cyclase with a necessary role in biofilm formation. Here we present the structure of an N-terminally truncated form of VC0395_0300, which retains the active GGEEF domain for diguanylate cyclase activity but lacks 160 residues from the poorly organized N-terminal domain. X-ray diffraction data was collected from a crystal of VC0395_0300(161-321) to a resolution of 1.9 Å. The structure displays remarkable topological similarity with diguanylate cyclases from other bacterial systems, but lacks the binding site for c-di-GMP present in its homologues. Finally, we demonstrate the ability of the truncated diguanylate cyclase VC0395_0300(161-321) to produce c-di-GMP, and its role in biofilm formation for the bacteria.


Assuntos
Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Fósforo-Oxigênio Liases/química , Vibrio cholerae/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Domínio Catalítico , Cristalografia por Raios X , GMP Cíclico/análogos & derivados , GMP Cíclico/biossíntese , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Modelos Moleculares , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Domínios Proteicos , Sistemas do Segundo Mensageiro , Solubilidade , Eletricidade Estática , Vibrio cholerae/genética , Vibrio cholerae/fisiologia
17.
J Biol Chem ; 295(2): 539-551, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31801828

RESUMO

Sensing of red and far-red light by bacteriophytochromes involves intricate interactions between their bilin chromophore and the protein environment. The light-triggered rearrangements of the cofactor configuration and eventually the protein conformation enable bacteriophytochromes to interact with various protein effector domains for biological modulation of diverse physiological functions. Excitation of the holoproteins by red or far-red light promotes the photoconversion to their far-red light-absorbing Pfr state or the red light-absorbing Pr state, respectively. Because prototypical bacteriophytochromes have a parallel dimer architecture, it is generally assumed that symmetric activation with two Pfr state protomers constitutes the signaling-active species. However, the bacteriophytochrome from Idiomarina species A28L (IsPadC) has recently been reported to enable long-range signal transduction also in asymmetric dimers containing only one Pfr protomer. By combining crystallography, hydrogen-deuterium exchange coupled to MS, and vibrational spectroscopy, we show here that Pfr of IsPadC is in equilibrium with an intermediate "Pfr-like" state that combines features of Pfr and Meta-R states observed in other bacteriophytochromes. We also show that structural rearrangements in the N-terminal segment (NTS) can stabilize this Pfr-like state and that the PHY-tongue conformation of IsPadC is partially uncoupled from the initial changes in the NTS. This uncoupling enables structural asymmetry of the overall homodimeric assembly and allows signal transduction to the covalently linked physiological diguanylate cyclase output module in which asymmetry might play a role in the enzyme-catalyzed reaction. The functional differences to other phytochrome systems identified here highlight opportunities for using additional red-light sensors in artificial sensor-effector systems.


Assuntos
Alteromonadaceae/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Fitocromo/metabolismo , Regulação Alostérica , Alteromonadaceae/química , Proteínas de Bactérias/química , Cristalografia por Raios X , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Ativação Enzimática , Proteínas de Escherichia coli/química , Modelos Moleculares , Fósforo-Oxigênio Liases/química , Fitocromo/química , Conformação Proteica , Multimerização Proteica
18.
Nat Commun ; 10(1): 4086, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501441

RESUMO

The bacterial second messenger cyclic-di-GMP is a widespread, prominent effector of lifestyle change. An example of this occurs in the predatory bacterium Bdellovibrio bacteriovorus, which cycles between free-living and intraperiplasmic phases after entering (and killing) another bacterium. The initiation of prey invasion is governed by DgcB (GGDEF enzyme) that produces cyclic-di-GMP in response to an unknown stimulus. Here, we report the structure of DgcB, and demonstrate that the GGDEF and sensory forkhead-associated (FHA) domains form an asymmetric dimer. Our structures indicate that the FHA domain is a consensus phosphopeptide sensor, and that the ligand for activation is surprisingly derived from the N-terminal region of DgcB itself. We confirm this hypothesis by determining the structure of a FHA:phosphopeptide complex, from which we design a constitutively-active mutant (confirmed via enzyme assays). Our results provide an understanding of the stimulus driving DgcB-mediated prey invasion and detail a unique mechanism of GGDEF enzyme regulation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bdellovibrio/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Sequência de Aminoácidos , Ativação Enzimática , Ligantes , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Domínios Proteicos , Multimerização Proteica , Relação Estrutura-Atividade
19.
J Inorg Biochem ; 201: 110833, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31520879

RESUMO

Heme-based oxygen sensors allow bacteria to regulate their activity based on local oxygen levels. YddV, a globin-coupled oxygen sensor with diguanylate cyclase activity from Escherichia coli, regulates cyclic-di-GMP synthesis based on oxygen availability. Stable and active samples of the full-length YddV protein were prepared by attaching it to maltose binding protein (MBP). To better understand the full-length protein's structure, the interactions between its domains were examined by performing a kinetic analysis. The diguanylate cyclase reaction catalyzed by YddV-MBP exhibited Michaelis-Menten kinetics. Its pH optimum was 8.5-9.0, and catalysis required either Mg2+ or Mn2+; other divalent metal ions gave no activity. The most active form of YddV-MBP had a 5-coordinate Fe(III) heme complex; its kinetic parameters were KmGTP 84 ±â€¯21 µM and kcat 1.2 min-1. YddV-MBP with heme Fe(II), heme Fe(II)-O2, and heme Fe(II)-CO complexes had kcat values of 0.3 min-1, 0.95 min-1, and 0.3 min-1, respectively, suggesting that catalysis is regulated by the heme iron's redox state and axial ligand binding. The kcat values for heme Fe(III) complexes of L65G, L65Q, and Y43A YddV-MBP mutants bearing heme distal amino acid replacements were 0.15 min-1, 0.26 min-1 and 0.54 min-1, respectively, implying that heme distal residues play key regulatory roles by mediating signal transduction between the sensing and functional domains. Ultracentrifugation and size exclusion chromatography experiments showed that YddV-MBP is primarily dimeric in solution, with a sedimentation coefficient around 8. The inactive heme-free H93A mutant is primarily octameric, suggesting that catalytically active dimer formation requires heme binding.


Assuntos
Proteínas de Escherichia coli/química , Ferro/química , Fósforo-Oxigênio Liases/química , Substituição de Aminoácidos , Domínio Catalítico , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Heme/química , Cinética , Ligantes , Oxirredução , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Ligação Proteica
20.
Bioorg Med Chem Lett ; 29(20): 126660, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31521478

RESUMO

Enzymes in the methylerythritol phosphate pathway make attractive targets for antibacterial activity due to their importance in isoprenoid biosynthesis and the absence of the pathway in mammals. The fifth enzyme in the pathway, 2-C-methyl-d-erythritol-2,4-cyclodiphosphate synthase (IspF), contains a catalytically important zinc ion in the active site. A series of de novo designed compounds containing a zinc binding group was synthesized and evaluated for antibacterial activity and interaction with IspF from Burkholderia pseudomallei, the causative agent of Whitmore's disease. The series demonstrated antibacterial activity as well as protein stabilization in fluorescence-based thermal shift assays. Finally, the binding of one compound to Burkholderia pseudomallei IspF was evaluated through group epitope mapping by saturation transfer difference NMR.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/biossíntese , Burkholderia pseudomallei/enzimologia , Eritritol/análogos & derivados , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Pirimidinas/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Eritritol/biossíntese , Humanos , Cinética , Estrutura Molecular , Ligação Proteica , Transdução de Sinais , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...